If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+300x-200=0
a = 100; b = 300; c = -200;
Δ = b2-4ac
Δ = 3002-4·100·(-200)
Δ = 170000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{170000}=\sqrt{10000*17}=\sqrt{10000}*\sqrt{17}=100\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-100\sqrt{17}}{2*100}=\frac{-300-100\sqrt{17}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+100\sqrt{17}}{2*100}=\frac{-300+100\sqrt{17}}{200} $
| 2(x-49)+7=3 | | 5y-(3y-2)=12 | | -9(z+47)=-45 | | 3n+17=-5(-1-3n) | | 5x-4-30=36(18-6x) | | X^2+(x-6)^2=218 | | 10x=24-16x | | -6(8+5a)+3=-a-16 | | 8x-41=9x+17=180 | | 32-4a=-5(7+8a)-5 | | 5j+4j=18 | | 5+3/2x=32 | | 29-4x=-7(-4x+5) | | -7y+4y=9=6y | | -v/2=-22 | | 20.5=3x-2 | | -(n-8)=38-6n | | 4(3k-1)=-16 | | 175m-100m+43,650=45,675+150m | | 2(8y-7)=16+6y | | -6b-26=-2(b+3) | | -50=y/4 | | 4(3k-1)=16 | | 5/7x-3/8=19 | | 32-4x=3x+5(1+4x) | | 6=(7x-15)/8 | | j−8=-4 | | 216=-6(-4+4n) | | 7x-(x-5)=57 | | 25x+40=65x+30 | | 24+8n=-8+4(2+5n) | | -17=x12 |